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Abstract

The e-folding time by which an initially localized perturbation disperses

throughout a charged-particle bunch characterizes the irreversible process of

chaotic mixing. In the presence of stationary, nonlinear space-charge forces,

this time scale is estimated to be a few space-charge-depressed betatron peri-

ods, much shorter than the collisional relaxation time. The estimate derives

from a geometrodynamic technique that is applied to quantify the exponen-

tial separation of nearby trajectories and their eventual distribution over a

microcanonical ensemble.
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Rapid irreversible dynamics is a central concern in producing high-brightness particle

beams. Time scales of irreversible processes place constraints on methods for compensating

against degradation of beam quality. Examples include reversing deleterious effects from

space charge in high-brightness injectors [1], and from coherent synchrotron radiation in

accelerators that power modern free-electron lasers [2]. Compensation needs to be done on

a time scale fast compared to the irreversible process, which in turn affects the choice and

configuration of the associated hardware.

The past few years have seen development of a geometrodynamic technique for ana-

lytically estimating the largest Lyapunov exponent in a system having many degrees of

freedom [3]. It concerns mixing of chaotic orbits through the configuration space on an

exponential time scale. The mixing is irreversible in the sense that infinitesimally small fine-

tuning is needed to reassemble the initial conditions. It is also distinctly different from phase

mixing (linear Landau damping), a regular, reversible process that “winds up” the phase

space through a distribution of orbital frequencies. Phase mixing proceeds on a relatively

slow time scale set by the distribution of frequencies.

Space charge will typically result in a nonintegrable potential, i .e., one in which the

degrees of freedom are coupled. Systems having at least two degrees of freedom and a

nonintegrable potential can be expected to comprise a significant percentage of chaotic

orbits. This is true even if the potential is stationary, the case under consideration in what

follows.

A charged-particle bunch will generally have a density distribution with a Debye tail [4].

Interior particles that never reach into the Debye tail are effectively screened from external

forces; however, particles reaching into the Debye tail will respond to these forces and

communicate their influence throughout the bunch. Nonlinear space-charge forces likewise

predominate in the Debye tail, so these same particles are also the ones that are most

susceptible to chaotic behavior. Moreover, on a local scale, a bunch is fully 3N-dimensional,

with N representing the number of particles. All of the constituent particles are therefore

under the influence of space-charge fluctuations, and conditions can be such that a generic
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orbit is chaotic.

We now turn toward calculating the time scale for mixing. Action principles in classical

mechanics are tantamount to extremals of “arc lengths;” thus, one can infer a metric tensor

from an action principle [5]. The metric tensor manifests all of the properties of the mani-

fold over which the system evolves, with these properties being calculable following standard

principles of differential geometry [6]. Of special interest for determining Lyapunov expo-

nents, quantities that measure the exponential rate at which initially localized trajectories

separate, is the equation of geodesic deviation:

D2δqα

ds2
+Rα

βγδ
dqβ

ds
δqγ

dqδ

ds
= 0, (1)

in which q(s) denotes the coordinate vector of the system, δq(s) represents the separation

vector between neighboring geodesics at “proper time” s, D/ds denotes covariant differ-

entiation, Rα
βγδ is the Riemann tensor derivable from the metric tensor, and summation

over repeated indices is implied with each index spanning the number of degrees of freedom

accessible to the system. Equation (1) is fundamental for determining a Lyapunov exponent

λ because it is defined in terms of the separation vector:

λ = lim
t→∞

1

t
ln
|δq(t)|
|δq(0)| . (2)

Any number of action principles, and therefore any number of metric tensors, can be

selected to proceed further. Eisenhart’s metric [7], which is consistent with Hamilton’s

least-action principle, is probably the most convenient choice. It offers easy calculation

of the Riemann tensor, and it avoids spurious results traceable to the singular boundary

of the perhaps better-known Jacobi metric that is derivable from Maupertius’ least-action

principle [8]. Eisenhart’s metric operates over a combined space-time manifold in which the

geodesics are parameterized by the real time t, i .e., ds2 = dt2 with

ds2 = − 2V (q)(dq0)2 + δijdq
idqj + 2dq0dqN+1, (3)

in which V (q) is the potential, δij is the unit tensor corresponding (without loss of generality)

to a cartesian spatial coordinate system, the indices i, j run from 1 to the number of degrees
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of freedom N (= 3N generally), q0 = t, qN+1 = t/2−
∫ t

0 dt
′L(q, q̇), and L is the Lagrangian.

The resulting geodesic equations for the spatial coordinates qi are Hamilton’s equations of

motion, so the particle trajectories correspond to a canonical projection of the Eisenhart

geodesics onto the configuration’s space-time manifold. A convenient byproduct of the

Eisenhart metric is that the only nonzero components of the Riemann tensor are R0i0j =

∂i∂jV , in which ∂i = ∂/∂qi. In turn, the only nonzero component of the Ricci tensor

Rαβ ≡ Rγ
αγβ is R00 = ∂i∂iV .

Rather than evaluate the geodesic deviation along all possible directions, we instead

construct and study a generic geodesic deviation. To set up the governing equation, we put

δq ∝
√
ψn̂, with n̂ = δq/|δq| denoting the unit vector. Then, recognizing that there is no

exponential growth of a deviation parallel to the geodesic, we average Eq. (1) over all N − 1

perturbations δq that are orthogonal to the reference geodesic. The resulting equation of

“generic” geodesic deviation is [9]

d2ψ

dt2
+
Hβ

β

N − 1
ψ = 0, (4)

in whichHβ
β = Rµν q̇µq̇ν = ∂i∂iV measures the curvature of the manifold along the geodesics,

i .e., the particle trajectories. Although the potential V (q) is taken to be explicitly time-

independent, an orbiting particle nevertheless sees a time-dependent curvature given that

it is measured with reference to the particle’s geodesic parameterized by the time t. The

potential is a function of the coordinate vector q, which in turn is implicitly time-dependent.

While orbiting in the self-consistent potential, each particle responds to the “bumpiness,”

i .e., the local curvature, it sees, the bumpiness being associated with parametric resonances

between the instantaneous orbital period and the effective nonlinear forces. For a chaotic

orbit the resonances may be regarded to act stochastically, and in turn the equation of

generic geodesic deviation may be regarded to be that of a stochastic oscillator,

d2ψ

dt2
+ [κt + σtη(t)]ψ = 0, (5)

in which κt and σt are related to the time-averaged curvature and fluctuations, respectively:
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κt =
〈Hβ

β〉t
N − 1

, σt =

√〈
(Hβ

β)2 − 〈Hβ
β〉2t
〉
t√

N − 1
, (6)

and η(t) denotes a gaussian stochastic process. Specifically, 〈η(t)η(t − τ )〉 = τδ(t), where

the average is taken over all realizations of the process, and τ is the correlation time, which

is intermediate between the time required for the particle to traverse the average curvature

radius and the time for it to transit the length scale of a typical fluctuation [3]. A gaussian

process is the zeroth-order approximation of a cumulant expansion of the actual stochastic

process.

As t → ∞, the limit of interest for calculating a Lyapunov exponent, orbits of total

energy E that mix through the configuration space will evolve toward an invariant measure,

specifically the microcanonical ensemble µ = δ(H − E), over which time averages become

equivalent to phase-space averages. Anticipating that space charge will typically establish

a preponderance of chaotic orbits, we consider it reasonable to average over the micro-

canonical ensemble, which is tantamount to invoking the so-called “chaotic hypothesis” [10].

Accordingly, for an arbitrary function A(q) of the spatial coordinate q, the average becomes

lim
t→∞
〈A〉t = 〈A〉µ =

∫
dq
∫
dq̇ A(q)δ[H(q, q̇)− E]∫

dq
∫
dq̇ δ[H(q, q̇)− E]

, (7)

and the generic geodesic approximately adheres to the simplified stochastic-oscillator equa-

tion

d2ψ

dt2
+ [κ+ ση(t)]ψ = 0, (8)

in which κ, σ is shorthand notation for 〈κ〉µ, 〈σ〉µ, respectively. Note that all averages 〈A〉µ

are functions of the total particle energy.

Van Kampen [11] calculates from Eq. (8) the evolution of the process-averaged second

moments of ψ, out of which the Lyapunov exponent corresponding to the mixing rate appears

as a function of the correlation time τ [3]. Using a reasonable estimate of τ , one can write

the Lyapunov exponent in the following convenient analytical form:
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λ(ρ) =
1√
3

L2(ρ)− 1

L(ρ)

√
κ;

L(ρ) =
[
T (ρ) +

√
1 + T 2(ρ)

]1/3

, T (ρ) =
3π
√

3

8

ρ2

2
√

1 + ρ + πρ
; (9)

in which ρ ≡ σ/κ, a quantity that measures the ratio of the average curvature radius to

the length scale of fluctuations [12]. A plot of λ/
√
κ versus ρ is given in Fig. 1; it shows

that the time scale for mixing, 1/λ, is a ρ-dependent multiple of κ−1/2, so that κ−1/2 is the

fundamental time scale governing the irreversible process. Near the origin the curve scales

as ρ2, and at large ρ it scales as ρ1/3.

Obtaining Eq. (9) seems to involve many approximations; however, they are all summa-

rized concisely by the notion that a generic trajectory is chaotic, governed by a gaussian

random process under the influence of parametric resonances, and evolving toward the micro-

canonical ensemble, an invariant measure. Numerical experiments, principally concerning

condensed-matter and stellar systems, historically guided the reasoning that leads to the

estimate. For example, Ref. [3] summarizes simulations of coupled-spin systems with long-

range interactions and shows the estimated Lyapunov exponents agree remarkably well with

computed values.

Because our interest is rapid mixing, we regard space charge to influence a given particle

primarily through a coarse-grained potential that is everywhere proportional to the local

particle density. Discrete collisions are presumed to alter the dynamics over a relaxation

time much longer than the mixing time. A coarse-grained potential by no means vitiates

the mechanism of parametric resonance. On the contrary, a Fourier frequency spectrum

of a self-consistent potential associated with nonuniform density will generally feature con-

tinua. Consequently, ample opportunities will present themselves for parametric resonances

between the fundamental frequency of a generic particle orbit and the field through which

it orbits.

The foregoing results are now applied to a single charge orbiting in a smooth, three-

dimensional (N = 3) potential V = Vo + Vs, with Vo denoting the potential associated with

focusing forces external to the bunch, and Vs denoting the coarse-grained potential associated
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with space-charge forces internal to the bunch. For concreteness we take the external forces

to be linear, so Vo is quadratic in the coordinates, i .e., Vo(q) = (ω2
xx

2 + ω2
yy

2 + ω2
zz

2)/2.

Application of Poisson’s equation then gives a simple result:

∇2V = ω2
o −

e

εo
n(q), (10)

in which ω2
o = ω2

x + ω2
y + ω2

z , e is the single-particle charge, εo is the permittivity of free

space, and n(q) is the (smoothed) particle density.

The quantities κ and σ are both determined from the Laplacian of the coarse-grained

potential Vs. The results may be expressed conveniently in terms of the plasma frequency

at the bunch centroid, ωpo, the space-charge-depressed focusing strength ω2
s = ω2

o −ω2
po, and

the normalized particle density ν(q) = n(q)/n(0):

κ =
ω2
po

2

( ωs
ωpo

)2

+ 1− 〈ν〉
 ,

σ =
ω2
po√
2

√
〈ν2〉 − 〈ν〉2,

ρ =
σ

κ
=

√
2
√
〈ν2〉 − 〈ν〉2

(ωs/ωpo)2 + 1− 〈ν〉 . (11)

From the estimated Lyapunov exponent as given by Eq. (9), one sees that the time scale for

irreversible chaotic mixing, τm ≡ 1/λ, is principally determined by the value of 1/
√
κ and is

modified in the prescribed way by the value of ρ which carries the influence of the operative

parametric resonances.

In realistic inhomogeneous density distributions, the value of ρ will typically be small

but appreciable, and in turn Fig. 1 and Eq. (11) make clear that τm will typically be a few

space-charge-depressed betatron periods. This agrees with, for example, the University of

Maryland multiple-beam experiment showing distortion of an initial 5-beamlet configura-

tion on time scales commensurate with a depressed betatron period [13]. Thus, to ensure

mixing does not spoil a process of emittance compensation, a reasonable conservative cri-

terion is that the process be completed within a plasma period, a criterion that translates

into permissible beamline locations and maximum length that the associated hardware can
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occupy [14].

The mixing time is very short compared to the collisional relaxation time. The latter

scales roughly as ND/ωp, where ND is the number of particles in a Debye sphere, and is

therefore typically several orders of magnitude longer than the mixing time. The mixing

time calculated here also differs conceptually from a relaxation time. Geometrodynamics

based on Eisenhart’s metric takes no account of the evolution of velocity space. Moreover,

a coarse-grained potential washes out the influence of collisions. Although we specialized to

beams with space charge, we may nonetheless infer that, for a system in which parametric

resonances cause typical particle trajectories to be chaotic, the mixing time will be governed

principally by a global time scale derivable from the Lagrangian of the potential. Thus the

time scale of interest in particle beams is the effective betatron period, in plasmas it is the

plasma period, in gravitational systems it is the free-fall time, etc.

One must take care to consider mixing time within the framework of globally chaotic

behavior. An initially localized perturbation will have “mixed” only after it has grown to

the point that its scale is comparable to the size of the system. By contrast, discreteness

noise associated with single-particle interactions can also generate rapid exponential growth

of perturbations, but the growth saturates on small scales and is therefore not representative

of mixing [15].

The foregoing treatment has the attractive feature of being anchored to the behavior

of a generic, i .e., “average” trajectory that samples the global phase space established by

a coarse-grained potential. By design it appropriately predicts zero mixing due to local

interparticle interactions. Concomitantly, it predicts infinite chaotic mixing time for linear

space-charge forces. The particle density is then uniform; Eqs. (9) and (11) make clear that

the corresponding Lyapunov exponent is zero. The same is true, of course, for linear external

forces and zero space charge.

With a more general metric, specifically a Finsler metric, geometrodynamics can incor-

porate a potential that is both time-dependent and velocity-dependent [16]. It is thereby

applicable to a wide variety of beam-dynamics problems. For example, one might be able
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to devise a geometric measure of chaos over a Finsler manifold for use in rapidly mapping

the features of a system’s Poincaré surface of section, as has been done for the Hénon-

Heiles potential [17]. If so, then the method would provide efficient calculation of dynamic

apertures in circular machines in which magnet nonlinearities, and perhaps beam-beam in-

teractions, establish parametric resonances that gradually degrade the beam. Traditional

methods require very long integration times and their attendant numerical difficulties.

For a time-dependent potential, one can postulate a lowest-order approximation in which

the principal effect of the time dependence on mixing is to establish additional parametric

resonances. They could arise, for example, by way of resonant coupling between space-

charge modes and periodicities in the transport lattice. A rough estimate of the mixing

time would then follow from Eq. (11), with the time-averaged potential defining the micro-

canonical ensemble. Insofar as the result involves the depressed betatron frequency, it agrees

with “relaxation” times seen in beams that are mismatched to their transport lattices [13].

However, one must not infer too much from this conjecture. The Eisenhart metric, being

independent of velocity space, cannot account for energy exchange between space-charge

modes and individual particles. Thus, important processes such as violent relaxation and

attendant halo formation [18] are missing. In principle, they are accessible with a Finsler

metric.

It will interesting to compare geometrodynamic predictions against numerical experi-

ments that specifically concern the evolution of particle ensembles. The fate of initially

localized perturbations ostensibly arising in response to transient forces external to the

bunch is of special interest. Inasmuch as the formalism yields mixing time versus total par-

ticle energy, it provides a “diagnostic” of chaotic behavior. Particles passing through regions

with strongly nonlinear forces will tend to have shorter mixing times than those that do not.

The author is grateful to M. Valluri for discussions of mixing in stellar systems, and to

M. Reiser for comments on an earlier version of this paper. This work was supported by the

Universities Research Association, Inc., under contract DE-AC02-76CH00300 with the U.S.

Department of Energy.
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FIGURES

FIG. 1. Lyapunov exponent λ in units of
√
κ plotted as a function of ρ = σ/κ; the quantities

κ and σ are defined in the text.
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